Alternative aviation fuels

Flightpath to 2050?
Dr Chris Malins
February 2019
About Cerulogy

- Consultancy of Dr Chris Malins, formerly:
 - Fuels lead for the ICCT
 - Communications lead for Renewable Fuels Agency
 - Representative for ICSA on several ICAO committees (AFAHG, SUSTAF, AFTF)
- Experts in alternative fuels policy and sustainability, working for government, business and civil society
Why alternative fuels?

- Aviation industry continues to grow rapidly (~4% annual)
- Climate impact significant now, and growing with industry
- Aviation in general not readily electrifiable
- License to operate requires aviation industry to become consistent with [1.5/2] degree future

Source: WEF (2011) Policies and Collaborative Partnership for Sustainable Aviation
That’s a lot of alternative jet fuel...

- The ICAO secretariat has presented scenarios for alternative fuel meeting from 4% to 100% of 2050 alternative fuel demand.
So, what are the options?

- HEFA
- Biomass-to-jet
- Alcohol-to-jet
- Power-to-jet
HEFA

- Hydrotreated oils and lipids
 - Pros:
 - demonstrated technology;
 - commercially operational (heading towards 10 billion litres global capacity);
 - cost proposition well understood
 - Cons:
 - feedstocks (vegetable oils) costly -> no prospect of being cheaper than jet fuel;
 - Indirect emissions believed to be high for main vegetable oils;
 - preferred feedstocks include palm oil and PFAD;
 - food vs. fuel
Biomass-to-jet

- Synthetic jet fuel via pyrolysis and upgrading or gasification and synthesis of 'generic' biomass

- Pros:
 - low cost feedstock, potential cost reduction for process over time;
 - each technology stage has been demonstrated (e.g. in GtL/CtL)

- Cons:
 - Full process not commercially demonstrated;
 - high capital cost;
 - high cost in short term;
 - uncertainty over achievable cost profile;
 - some sustainability issues
Alcohol-to-jet

- Produce ethanol (conventional; cellulosic; ‘recycled carbon’ via CO fermentation)
- Thermochemical upgrading to hydrocarbons
- Pros:
 - Does not depend on vegetable oils
 - Builds on established ethanol industry
- Cons:
 - Converting a supported biofuel into less volume of supported biofuel
 - Cost
 - If using conventional ethanol, inherit sustainability issues
Power-to-jet

- Synthesise jet fuel from hydrogen and carbon dioxide
- **Pros:**
 - low sustainability risk;
 - relatively low land footprint;
 - cost of renewable electricity falling
- **Cons:**
 - rather inefficient compared to other uses for electricity (maybe 50% conversion of electrical energy to chemical energy);
 - process not commercially demonstrated;
 - high cost in short and medium term (cf. bit.ly/e-fuels)
 - require electricity at below ~3 cents/kWh to approach price parity
Demonstration phase

- Many airlines have trialled biofuels
- Some airports now offer biofuelling options (e.g. Stockholm, Halmstad, Oslo)
- Various supportive initiatives
- However, larger scale ambitions have not been fulfilled
 - EU target of 2 million tonnes by 2020 (Flightpath 2020)
 - U.S. target of 2 billion gallons by 2020
No regrets? Modal priorities...

- Fuel synthesis generally produces mixed molecules
 - Petrol range (incl. naphtha)
 - Jet/diesel range (mid-distillates)
- Achieve up to ~85% selectivity of mid-distillates
- Molecules suitable for upgrading to jet fuel will also be suitable for upgrading to road diesel
 - Developing syn-diesel technologies means developing syn-jet technologies, and vice versa
- Aviation ‘needs’ alt-fuels more than road due to chronic reliance on liquids...
- ... but, road transport will be using a lot of liquid fuel for the foreseeable future
- ...there’s no obvious environmental benefit from forcing alt fuels into jets instead of road diesel in the near term (especially while volumes are small)
Policy and neutrality

- In past, fuel supplied to aviation has not been eligible for alternative fuel support (original rules of RED, RFS, LCFS...)
- This has been somewhat resolved by making aviation fuels eligible for credit
 - Jet fuel suppliers not obligated parties
 - Implicit subsidy of alt aviation fuel by road fuel consumers
- Aviation may need larger incentives
 - e.g. 1.2 x multiplier for RED II
 - UK ‘Development Fuel’ mandate favours drop-in molecule production
 - *but this could imply even larger cross-subsidisation*
- Multiple incentives?
 - e.g. RED II plus CORSIA
CO₂ abatement cost

- Alternative fuels expected to need high implied CO₂ abatement cost to drive commercial viability
 - Biofuels: 200-400 €/tCO₂e
 - PtL: 500+ €/tCO₂e
- Implications for cost of aviation
 - Moving to 50% PtL by 2050 could double total aviation fuel spend (bit.ly/e-fuels)
 - Could affect demand growth
Land requirements

- Replacing all EU aviation full with power-to-jet would take up to ~13 million hectares of renewable electricity generation at current typical German areal energy yields (comparable to size of Greece)
 - Compare to 6 million hectares in EU currently devoted to biomass for energy
 - Improved renewable energy yields -> smaller areas required

- Doing the same with biomass-to-liquids (perennial grasses on marginal land) would take something like four times that area (~60 Mha, similar to the size of Ukraine)
 - Rapeseed oil HEFA double that again, 120 Mha

- Expanding HEFA use to cover any significant fraction of aviation fuel would have major impact on vegetable oil markets
 - Direct and/or indirect impact on palm oil and other oil crops expansion

- Global replacement has proportionately higher resource demands
Lifecycle emissions and indirect land use change – example of palm
Non-CO$_2$ climate impacts

- No demonstrated impact of synthetic fuels on non-CO$_2$ climate impacts
 - At least one paper suggests possibility of reductions
 - Would give an environmental reason to prioritise synthetic fuels into aviation
- Even with 100% alternative fuels, climate impact of aviation could still be large
- Additional solutions are needed for non-CO$_2$
Conclusions

- Four main alt aviation fuel technology families
 - HEFA, BtL, AtJ, PtL
- All have higher costs than jet
 - PtL and BtL have higher current costs, but prospect of long term cost reduction
- Total replacement of aviation fuel by 2050 would require massive volume (compared to current biofuel industry)
- Massive volumes would mean very large resource/land requirements and cost implications
- Some alternative aviation fuels could have (very) poor climate performance (e.g. palm HEFA)
- Alternative aviation fuels alone cannot resolve non-CO$_2$ climate impact of aviation
Questions?

chris@cerulogy.com