The global decarbonization challenge and aviation within it: where are we now, where are we going?

What should aviation’s fair share of these emissions reductions be and how does this compare to ATAG’s 2050 aspirational target?

Aviation Decarbonization Forum
Montréal, 12/02/2019

Dr. Martin Cames
Background and challenge

- IPCC: international transport, including aviation needs to contribute appropriately to global GHG mitigation efforts
- Civil aviation contributes 2.1% of global CO\textsubscript{2} emissions
- Emissions were and are constantly growing by 3-5%/year
- Aviation’s non-CO\textsubscript{2} GHG impacts are largely neglected
- So far aviation’s emissions are hardly regulated
- Challenge: develop a mitigation target compatible with the staying well below 2.0°C objective of the Paris Agreement
CO₂ emissions from international bunkers

Sources: IEA 2019, IMO 2009, IMO 2014
Projected CO₂ emissions from international aviation

Projected emissions from international aviation and the EU target path

Projected change in global mean surface air temperature

<table>
<thead>
<tr>
<th>RCP</th>
<th>2046-2065 Mean</th>
<th>Likely range</th>
<th>2081-2100 Mean</th>
<th>Likely range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>1.6</td>
<td>1.0 to 2.2</td>
<td>1.6</td>
<td>0.9 to 2.3</td>
</tr>
<tr>
<td>4.5</td>
<td>2.0</td>
<td>1.5 to 2.6</td>
<td>2.4</td>
<td>1.7 to 3.2</td>
</tr>
<tr>
<td>6.0</td>
<td>1.9</td>
<td>1.4 to 2.4</td>
<td>2.8</td>
<td>2.0 to 3.7</td>
</tr>
<tr>
<td>8.5</td>
<td>2.6</td>
<td>2.0 to 3.2</td>
<td>4.3</td>
<td>3.2 to 5.4</td>
</tr>
</tbody>
</table>

Sources: Wikipedia - Representative Concentration Pathway, IPCC 2013, p. 23, authors’ own calculations
International aviation’s share of global GHG emissions under the RCP 2.6 pathway (chance of meeting 2°C are 66%)

Sources: ICAO 2013, Lee & Owen 2016, van Vuuren, D. P. et al. 2011
Bottom-up approach

- Reduction potential within aviation
 - Aircraft Efficiency: 0.5 to 2.6, average 1.3%/a
 - Operational efficiency: on average <1%/a
 - Sustainable Alternative Fuels (biofuels, e-fuels)
 - Demand reduction: -x%/a?

- Reduction potential beyond aviation: Offsets
 - Credits from mitigation projects
 - Allowances from ETSs
 - Credits from negative emissions
Potential GHG mitigation targets

- Reduction potential within and beyond aviation (bottom-up)
- Constant share of RCP 4.5 and RCP 2.6 CO₂ emissions
- EU (2009): -80 to -95 % by 2050 compared to 1990
- Remaining budget approach: 66% likelihood staying below
 - < 2.0°C (2015): 11.6 Gt from 2021 (IPCC 5AR)
 - < 1.5°C (2018): 8.0 Gt from 2021 (Miller et al. 2017)
 - < 2.0°C (2018): 22.0 Gt from 2021 (Miller et al. 2017)
- CORSIA: carbon neutral growth (CNG 2020), 2021-2035
- ATAG: CNG2020 + -50% compared to 2005, 2030-2050
Potential CO₂ emission targets for international aviation

Carbon budget and potential CO₂ emission targets for international aviation

Aggregated CO₂ emissions 2021 to 2050 and deviation from 2°C pathway

<table>
<thead>
<tr>
<th>Source</th>
<th>Gt CO₂ 2021-50</th>
<th>Deviation from RCP 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee & Owen 2016: S2 low tech/ops</td>
<td>41,4</td>
<td>213%</td>
</tr>
<tr>
<td>Lee & Owen 2016: S9 advanced tech/ops</td>
<td>35,3</td>
<td>167%</td>
</tr>
<tr>
<td>CORSIA post 2035 option 1</td>
<td>26,2</td>
<td>99%</td>
</tr>
<tr>
<td>Constant share of global CO₂ emissions (RCP 4.5)</td>
<td>22,8</td>
<td>73%</td>
</tr>
<tr>
<td>Carbon neutral growth 2020</td>
<td>20,9</td>
<td>58%</td>
</tr>
<tr>
<td>CORSIA post 2035 option 2</td>
<td>18,1</td>
<td>37%</td>
</tr>
<tr>
<td>ATAG</td>
<td>17,0</td>
<td>29%</td>
</tr>
<tr>
<td>Budget approach < 2.0°C (2018)</td>
<td>14,3</td>
<td>9%</td>
</tr>
<tr>
<td>Constant share of global CO₂ emissions (RCP 2.6)</td>
<td>13,2</td>
<td>0%</td>
</tr>
<tr>
<td>EU target path (min)</td>
<td>12,7</td>
<td>-4%</td>
</tr>
<tr>
<td>EU target path (max)</td>
<td>11,8</td>
<td>-10%</td>
</tr>
<tr>
<td>Budget approach < 2.0°C (2015)</td>
<td>11,5</td>
<td>-13%</td>
</tr>
<tr>
<td>Budget approach < 1.5°C (2018)</td>
<td>6,2</td>
<td>-53%</td>
</tr>
</tbody>
</table>

Sources: Authors’ own calculations
Conclusions

• Single year targets need to translated into an emission trajectory
• Efforts to reduce GHG emissions fall so far short of the global mitigation requirements
• Targets are not necessarily a sectoral cap but determine the contribution to global mitigation efforts

• Achieving these targets may require
 • Policies to incentivise technical and operational measures within the sector
 • Offsetting of emissions in other sectors
 • Behavioural change to reduce transport demand

• A GHG reduction target indicates that emissions cannot grow unlimited and will provide clear signals for investments decisions
Conclusions (continued)

• Even though aviation is not mentioned in the Paris Agreement it is implicitly included through Art. 4.1 (balance between anthropogenic emissions and removals)

• Contribution of aviation to global GHG mitigation efforts needs to be taken into account at the Global Stocktake of the UNFCCC (Art. 14.1 PA)

• Non-CO₂ GHG impacts must not be ignored

• Delaying action is not an option
 • Requires other sectors to reduce more
 • Requires steeper emission reduction in the future

• To contribute a fair share to global efforts for staying below 2.0/1.5°C aviation needs to increase ambition significantly
Thank you for your attention!

Dr. Martin Cames
Head Energy & Climate (Berlin)

Öko-Institut e.V.
Schickler Str. 5-7
10179 Berlin

Telephone: +49 30 40 50 85-383
e-mail: m.cames@oeko.de